Multitoe

High-Precision Interaction with Back-Projected Floors Based on High-Resolution Multi-Touch Input

ACM UIST 2010
Thomas Augsten, Konstantin Kaefer, Rene Meusel, Caroline Fetzer, Dorian Kanitz, Thomas Stoff, Torsten Becker, Christian Holz, and Patrick Baudisch

Abstract

Tabletop applications cannot display more than a few dozen on-screen objects. The reason is their limited size: tables cannot become larger than arm’s length without giving up direct touch. We propose creating direct touch surfaces that are orders of magnitude larger. We approach this challenge by integrating high-resolution multi-touch input into a back-projected floor. As the same time, we maintain the purpose and interaction concepts of tabletop computers, namely direct manipulation. We base our hardware design on frustrated total internal reflection. Its ability to sense per-pixel pressure allows the floor to locate and analyze users’ soles. We demonstrate how this allows the floor to recognize foot postures and identify users. These two functions form the basis of our system. They allow the floor to ignore users unless they interact explicitly, identify and track users based on their shoes, enable high-precision interaction, invoke menus, track heads, and allow users to control high-degree of freedom interactions using their feet. While we base our designs on a series of simple user studies, the primary contribution on this paper is in the engineering domain.

Video

Reference

Thomas Augsten, Konstantin Kaefer, Rene Meusel, Caroline Fetzer, Dorian Kanitz, Thomas Stoff, Torsten Becker, Christian Holz, and Patrick Baudisch. Multitoe: High-Precision Interaction with Back-Projected Floors Based on High-Resolution Multi-Touch Input. In Proceedings of ACM UIST 2010.